
Federated Continual Recommendation
Jaehyung Lim

Pohang University of
Science and Technology
Pohang, Republic of Korea
jaehyunglim@postech.ac.kr

Wonbin Kweon
University of Illinois
Urbana-Champaign
Champaign, IL, USA
wonbin@illinois.edu

Woojoo Kim
Pohang University of

Science and Technology
Pohang, Republic of Korea
kimuj0103@postech.ac.kr

Junyoung Kim
Pohang University of

Science and Technology
Pohang, Republic of Korea
junyoungkim@postech.ac.kr

Seongjin Choi
Pohang University of

Science and Technology
Pohang, Republic of Korea
sjin9805@postech.ac.kr

Dongha Kim
Pohang University of

Science and Technology
Pohang, Republic of Korea
dhkim0317@postech.ac.kr

Hwanjo Yu∗
Pohang University of

Science and Technology
Pohang, Republic of Korea
hwanjoyu@postech.ac.kr

Abstract
The increasing emphasis on privacy in recommendation systems
has led to the adoption of Federated Learning (FL) as a privacy-
preserving solution, enabling collaborative trainingwithout sharing
user data. While Federated Recommendation (FedRec) effectively
protects privacy, existing methods struggle with non-stationary
data streams, failing tomaintain consistent recommendation quality
over time. On the other hand, Continual Learning Recommendation
(CLRec) methods address evolving user preferences but typically
assume centralized data access, making them incompatible with FL
constraints. To bridge this gap, we introduce Federated Continual
Recommendation (FCRec), a novel task that integrates FedRec
and CLRec, requiring models to learn from streaming data while
preserving privacy. As a solution, we propose F3CRec, a framework
designed to balance knowledge retention and adaptation under the
strict constraints of FCRec. F3CRec introduces two key components:
Adaptive ReplayMemory on the client side, which selectively retains
past preferences based on user-specific shifts, and Item-wise Tempo-
ral Mean on the server side, which integrates new knowledge while
preserving prior information. Extensive experiments demonstrate
that F3CRec outperforms existing approaches inmaintaining recom-
mendation quality over time in a federated environment. Our code
is available at https://github.com/Jaehyung-Lim/F3CRec-CIKM-25.

CCS Concepts
• Information systems→ Retrieval models and ranking; Rec-
ommender systems; •Computingmethodologies→Distributed
artificial intelligence.
∗Corresponding author

This work is licensed under a Creative Commons Attribution 4.0 International License.
CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3761268

Keywords
Federated Learning, Continual Learning, Recommender Systems,
Federated Continual Recommender Systems

ACM Reference Format:
Jaehyung Lim, Wonbin Kweon, Woojoo Kim, Junyoung Kim, Seongjin Choi,
Dongha Kim, and Hwanjo Yu. 2025. Federated Continual Recommendation.
In Proceedings of the 34th ACM International Conference on Information and
Knowledge Management (CIKM ’25), November 10–14, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3746252.
3761268

1 Introduction
The extensive use of personal data in recommendation systems
raises significant privacy concerns, attracting strict scrutiny from
regulators and users. Regulations such as the General Data Protec-
tion Regulation (GDPR) [29] and California Consumer Privacy Act
(CCPA) [24] impose strict requirements on data collection and us-
age, pushing researchers and developers to find privacy-preserving
approches. In response, Federated Learning (FL) has been proposed
as a privacy-preserving solution, enabling collaborative model train-
ing across multiple clients without sharing their data with a central
server or other clients [20] (Figure 1a). By keeping user data local,
FL reduces privacy leakage while maintaining strong performance.

When applied to recommendation systems, Federated Recom-
mendation (FedRec) provides a promising solution for delivering
personalized experiences without compromising user privacy [1,
12, 25, 38, 39]. Recent work explores enhancements in personaliza-
tion, particularly in refining user and group specification, through
methods such as pseudo-user relationships [39], adaptive item em-
beddings [38, 39], and group-specific approaches [12, 26]. However,
these approaches are inherently designed under the assumption
of static, offline datasets, making them ill-suited for real-world
environments where user interactions continuously evolve in a
streaming fashion. As a result, existing FedRec methods fail to
address the challenge of maintaining consistent recommendation

ar
X

iv
:2

50
8.

04
79

2v
3

 [
cs

.L
G

]
 1

7
A

ug
 2

02
5

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746252.3761268
https://doi.org/10.1145/3746252.3761268
https://doi.org/10.1145/3746252.3761268
https://arxiv.org/abs/2508.04792v3

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Lim et al.

(a) Federated Recommendation

(c) Federated Continual Recommendation (Proposed)

round 𝒓𝒓
𝓓𝓓

Server

𝑢𝑢1 𝑢𝑢𝑘𝑘⋯

𝒓𝒓 + 𝟏𝟏𝒓𝒓 − 𝟏𝟏

(b) Continual Learning Recommendation

𝓓𝓓𝒕𝒕

Central
RS

𝓓𝓓𝒕𝒕−𝟏𝟏 𝓓𝓓𝒕𝒕+𝟏𝟏

𝓓𝓓𝒕𝒕−𝟏𝟏 𝓓𝓓𝒕𝒕+𝟏𝟏

round 𝒓𝒓
𝓓𝓓𝒕𝒕

Server

𝑢𝑢1 𝑢𝑢𝑘𝑘⋯

𝒓𝒓 + 𝟏𝟏𝒓𝒓 − 𝟏𝟏

Figure 1: A conceptual comparison between (a) FedRec, (b)
CLRec, and (c) FCRec (proposed).

quality over time, as they overlook the balance between retaining
past knowledge and adapting to new data.

On the other hand, Continual Learning Recommendation (CLRec)
methods, including structure-aware regularization-based methods
[30, 31, 34] and replay memory-based approaches [2, 21, 43], aim
to capture dynamic user preferences in the stream of user-item
interactions (Figure 1b). However, existing CLRec methods can-
not be readily applied in FedRec environments. Structure-aware
regularization methods rely on global user-item and user-user re-
lationships [30, 31, 34], and become infeasible under FedRec envi-
ronments where users have access only to their local parameters
and their own interaction data. Likewise, replay memory-based
approaches [2, 21, 43], which typically rely on globally shared his-
torical data for continual training, lose much of their effectiveness
in the FedRec setting. As a result, new methodological solutions are
required to overcome these constraints and enable CLRec under
the FL enviroment.

To fill the gap between FedRec and CLRec, we introduce FCRec
(FederatedContinualRecommendation) in Figure 1c, a new task de-
signed to provide personalized recommendation on non-stationary
data streams within a privacy-preserving federated setting. Inte-
grating both FedRec and CLRec introduces two constraints that
must be satisfied simultaneously: (1) From FedRec, users cannot
access other users’ interaction data or private parameters, and the
server cannot access users’ private parameters or interaction data
[1, 4, 25, 38]. (2) From CLRec, training must proceed using only
the currently available data, as revisiting past data is generally
disallowed due to streaming scenarios and memory constraints
[6, 17, 31, 34]. Thus, for FCRec, a model must learn from streaming
data in a federated manner without accessing past user data or other
users’ information. This makes FCRec a novel and challenging task
requires a new learning paradigm.

As a solution to the proposed task, we propose F3CRec, a Frame
work for Federated Continual Recommendation. Given the unique
strategy of FedRec (i.e., client-side local training and server-side
parameter aggregation), F3CRec maintains a balance between new
and old knowledge on both the client and server sides, within a
non-stationary data stream. To achieve this, we propose two core

components: (1) Adaptive Replay Memory on the client side to deter-
mine howmuch past preference information each user should retain
based on individual preference shifts, (2) Item-wise Temporal Mean
on the server side to adaptively integrate newly learned knowledge
with their previous counterparts.By doing so, F3CRec effectively
adapts to evolving user preferences while preserving valuable past
insights in a privacy-preserving federated environment.

Our contributions are summarized as follows:
• We propose a new task, FCRec (Federated Continual Rec om-
mendation), which applies continual recommendation in a privacy-
preserving federated recommendation setting.
• We introduce a novel framework, F3CRec (Framework for FCRec),
which incorporates an Adaptive Replay Memory on the client side
and an Item-wise Temporal Mean on the server side, to tackle the
proposed FCRec task.
• We demonstrate the effectiveness of our proposed framework
through extensive experiments on multiple federated backbone
models and four real-world datasets.

2 Related Work
2.1 Federated Recommendation
Federated Recommendation (FedRec) [27, 36, 38, 39] has emerged
as a privacy-preserving solution for decentralized personalized rec-
ommendation, following the development of federated learning (FL)
[20]. Existing FedRec studies can be broadly categorized into two
approaches: (1) adapting recommendation models to the federated
setting, and (2) incorporating structural enhancements to address
the inherent challenges in FedRec.
Adapting recommendation models to the federated setting.
[1, 4, 25] adapts traditional centralized recommendation models
[11, 15] for federated settings. [33] incorporates GNNs under pri-
vacy constraints, though it still suffers from privacy leakage. Sim-
ilarly, [35] extends FedRec with heterogeneous information net-
works (HINs) but still transmits user-item interactions. To mitigate
cold-start and cross-domain recommendation issues, [9, 40] inte-
grate item attributes by leveraging content-based feature. To reduce
communication costs, [22] employs active sampling, while [23] uti-
lizes low-rank parameterization to minimize update transmission.
Structural enhancements in federated recommendation. Re-
cent studies also have explored ways to enhance FedRec by implic-
itly capturing user-specific preferences, or user-user relationships
while maintaining privacy constraints based on aforementioned
FedRec strategy [4, 25]. Considering personalization, [38] enhances
user modeling with personalized item embeddings, and [19] intro-
duces self-supervised pretraining to improve representation learn-
ing. [12, 26] utilize group-wise information to get specified param-
eters. To mitigate aforementioned privacy issue from [33], [39]
constructs relation graphs from updated item embeddings instead
of users’ data or private parameter.
Federated recommendation in data streams. Despite these ad-
vancements, most FedRec methods assume stationary user interac-
tions, making them ill-suited for real-world evolving environments.

Federated Continual Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

2.2 Continual Recommendation (CLRec)
While traditional continual learning (CL) focuses on well-defined
tasks (e.g., class [7, 42] / task [14, 41] / domain [8, 18]-level), rec-
ommendation systems exhibit a more fluid structure without clear
task boundaries. Instead of discrete tasks, user preferences evolve
continuously, necessitating a distinct CL paradigm. Consequently,
CLRec extends CL concepts to recommendation tasks by incre-
mentally updating models and preserving historical information of
user-item relationships
Structure-aware regularization-based CLRec. One approach
to continual learning in recommendation systems is to apply reg-
ularization methods. In particular, structure-aware regularization
methods leverage graph-based techniques to preserve topological
knowledge. For example, [34] maintains knowledge at multiple
levels (global, local, node), while [30] aligns node embeddings and
model layers across tasks to retain past representations. More re-
cently, [31] refines user-specific constraints to accommodate dis-
tinct preference shifts.
Replay memory-based CLRec. Additionally, replay memory-
based methods are also utilized in CLRec. [21] employs herding
[32] to store pivotal samples for rehearsal, whereas [2, 43] maintain
an error memory for refining future predictions. [17] incorporates
stability-plasticity mechanisms to select the most informative his-
torical samples. Although these methods excel in centralized set-
tings, they typically assume full access to past user data or global
parameters, which raises privacy and scalability concerns.
Continual recommendation in FL environments. Structure-
aware regularization methods, which leverage global user-item and
user-user relationships [30, 31, 34], become infeasible in FedRec
environments where each user can only access their own interac-
tions. Similarly, replay memory-based approaches [2, 21, 43], which
typically depend on shared historical data for continual training,
lose much of their effectiveness in the FedRec setting. Thus, novel
methodological solutions are required to address these constraints
and facilitate CLRec in the FL environment.

3 Proposed Task: FCRec
Despite progress in FedRec and CLRec, their integration remains
unexplored. This work introduces FCRec as a novel task, bridging
FedRec and CLRec to ensure adaptability in real-world settings.

3.1 Concept Definition
Let a sequence of temporally partitioned data blocks be denoted as
D0, . . . ,D𝑇 . In the context of CL, each partitioned data block D𝑡 ,
representing a set of interactions, is treated as a distinct task. Before
training on D𝑡 , model parameters are initialized with those from
D𝑡−1. In the FedRec setting, each user is treated as a disjoint client,
maintaining their own local models. During each training round,
the server collects trained public parameters (e.g., item embeddings)
from clients and aggregates them to produce a global model update.
The aggregated parameters are then distributed back to clients.
Since these two learning paradigms are combined, the task inherits
constraints from both CLRec and FedRec.
Constraints from CLRec. Clients can access only their own data
from the current data block, following the non-revisiting constraint
in CLRec settings [6, 17, 31, 34], which arises from limited memory

and streaming data scenarios. To ensure fast and efficient model up-
dates in a streaming setting, they cannot utilize data from previous
time blocks D0, . . . ,D𝑡−1 during training on D𝑡 .
Constraints from FedRec. Clients cannot access other clients’
data, private parameters, or trained models at any stage. Addi-
tionally, the global server does not have access to client-side in-
teraction data or private parameters, aligning with FL principles
[12, 20, 25, 38, 40].
These constraints introduce fundamental challenges in FCRec, where
models must continuously adapt to non-stationary data streams
without access to centralized storage or past interactions.

3.2 Problem Formulation
We defineU𝑡 and I𝑡 as the sets of users and items that have ap-
peared in D0, · · · ,D𝑡 . For a given user 𝑢, the recommendation
model F is parameterized by 𝜃𝑢 = {Φ𝑢 , 𝑄𝑢 }, where Φ𝑢 represents
the user’s private parameters and 𝑄𝑢 indicates the public parame-
ters shared with the server. The predicted score for item 𝑖 is given
by 𝑦𝑢,𝑖 = F (𝑢, 𝑖 | 𝜃𝑢). There are multiple choices for the parameter
configuration. Following [12, 38, 39], we define Φ𝑢 as the user em-
bedding, a personalized score function, or a combination of both,
while 𝑄𝑢 corresponds to the item embedding. We focus on a com-
mon scenario where recommendations are based solely on implicit
feedback from user-item interactions. Specifically,𝑦𝑢,𝑖 = 1 indicates
that user 𝑢 has interacted with item 𝑖 , while 𝑦𝑢,𝑖 = 0 denotes the
absence of such an interaction.
CLRec side. Each dataset D𝑡 is divided into a train/valid/test
set. The model is trained on the training set and subsequently
evaluated to assess how well it has learned user preferences for
the corresponding block. Once training on D𝑡 is completed, the
learned parameters for user 𝑢 are denoted as 𝜃𝑡𝑢 = {Φ𝑡𝑢 , 𝑄𝑡𝑢 }. Before
starting training on D𝑡+1, 𝜃𝑡+1𝑢 is initialized with 𝜃𝑡𝑢 .
FedRec side. Each dataset D𝑡 is trained over multiple rounds
to gradually refine the model. During training, a subset of users
is sampled in each training round 𝑟 , and the selected users are
denoted asU𝑡,𝑟 . For a user 𝑢 ∈ U𝑡,𝑟 , the global server sends the
public parameter 𝑄𝑡,𝑟𝑔 , which initializes 𝑄𝑡,𝑟𝑢 . The user then trains
on their local dataD𝑡 (𝑢) using the initialized parameter𝑄𝑡,𝑟𝑢 along
with their private parameter Φ𝑡,𝑟𝑢 . After training at round 𝑟 , user
𝑢 (∈ U𝑡,𝑟) transmits 𝑄𝑡,𝑟𝑢 to the server. The server then aggregates
the received parameters {𝑄𝑡,𝑟𝑢 }𝑢∈U𝑡,𝑟 to obtain 𝑄𝑡,𝑟+1𝑔 . Then, the
updated public parameter is redistributed to the users.

4 Proposed Method: F3CRec
4.1 Overview
We propose F3CRec, a novel Federated Continual Recommendation
framework that applies CL at both the client and server sides in an
FL setting. F3CRec is a model-agnostic framework, allowing it adapt-
able for various FedRec famework. To handle the non-stationary
data stream under FCRec constraints, F3CRec incorporates:

• Adaptive Replay Memory (Section 4.2): Adjusts knowledge re-
tention per user by measuring ranking discrepancy between past
and current preferences, ensuring adaptation without sharing
interaction data or parameters across users.

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Lim et al.

Client 𝟏

3. Pre-aggregation

⋯
𝑸
𝒈′
𝒕,𝒓

Server

4-1. Measuring Knowledge Shift

𝑸𝒕−𝟏 𝑸
𝒈′
𝒕,𝒓

Item-wise Shift

𝑸𝟏
𝒕,𝒓 𝑸𝒖

𝒕,𝒓

Previous

Knowledge

4-2. Item-wise Temporal Mean

⊕⋅
Current

Knowledge

𝑸𝒈
𝒕,𝒓+𝟏

⋅

𝓛𝒕𝒐𝒕𝒂𝒍

𝓛𝑹𝒆𝒄

𝓛𝑲𝑫

ෝ𝒚𝒕

⊕

1. Measuring Preference Shift

2. Adaptive

Replay

Memory

ෝ𝒚𝒕−𝟏

Client 𝒖

𝑸𝒕−𝟏

𝚽𝒖
𝒕−𝟏

𝚽𝒖
𝒕,𝒓

Upload

Deploy

Private parametersPublic parameters

𝓓𝒕

𝓓𝒕−𝟏 𝓓𝒕+𝟏

𝑸𝒖
𝒕,𝒓

𝑸𝒖
𝒕,𝒓

𝑸𝒈
𝒕,𝒓+𝟏

Figure 2: The overall framework of F3CRec

• Item-wise Temporal Mean (Section:4.3) Aggregates item em-
beddings on the server while adaptively combining previous and
current knowledge based on the knowledge shift of each item.

F3CRec (1) adaptively transfers previous knowledge per user dur-
ing local training, and (2) dynamically integrates past and current
knowledge during server-side aggregation. The overall framework
of our method is illustrated in Figure 2.

4.2 Client-side Continual Learning
Existing CLRecs leverage global knowledge for training, but this
approach conflicts with the constraints of FedRec. To address this,
we propose a method where, during D𝑡 for user 𝑢, the model
updates 𝜃𝑡𝑢 using only the user’s own parameters 𝜃𝑡−1𝑢 and the
current dataD𝑡 (𝑢). Notably, only𝑄𝑢 (or𝑄𝑔) is exchanged between
the client and the server. At the beginning of D𝑡 , Φ𝑡𝑢 is initialized
with Φ𝑡−1𝑢 . The procedure is described in Algorithm 1

4.2.1 Measuring Preference Shift. Effectively learning new data
while preserving previously acquired knowledge requires knowl-
edge retention and adaption [31, 43]. To achieve this, we first mea-
sure how much a user’s preferences have shifted. This measure-
ment, referred to as the preference shift, determines howmuch prior
knowledge should be retained and guides the learning process for
incorporating it effectively.

Before measuring preference shift, we must define the user’s
preferences for a data block. Since we cannot have access to the
previous interactions, the user preference must be derived from
user’s each own parameters. To this end, we assume that the top-𝑁
items represent the user preference. Accordingly, we define previ-
ous knowledge of user 𝑢 for D𝑡−1 as:

𝑆𝑡−1𝑢 = {𝑖𝑡1 , · · · , 𝑖𝑡𝑁 }. (1)

While training on D𝑡 (𝑢), we infer the extent of the user’s prefer-
ence shift by observing changes in the rankings of items in 𝑆𝑡−1𝑢 .

With 𝑆𝑡−1𝑢 , we define the preference shift of user 𝑢 during D𝑡 at
training round 𝑟 as:

Δ𝑡,𝑟𝑢 =
∑︁
𝑖∈𝑆𝑡−1𝑢

��𝑟𝑡,𝑟𝑢 (𝑖) − 𝑟𝑡−1𝑢 (𝑖)
��

=

𝑁∑︁
𝑘=1

��𝑟𝑡,𝑟𝑢 (𝑖𝑡𝑘) − 𝑘 �� , where 𝑖𝑡𝑘 ∈ 𝑆𝑡−1𝑢 ,

(2)

where 𝑟𝑡−1𝑢 (𝑖) represents the ranking of item 𝑖 in 𝑆𝑡−1𝑢 inferred from
𝜃𝑡−1𝑢 , and 𝑟𝑡,𝑟𝑢 (𝑖) denotes its ranking of at round 𝑟 forD𝑡 . The value
Δ𝑡,𝑟𝑢 quantifies how much the rankings of the items in the top-𝑁
list for D𝑡−1 have changed during the training on D𝑡 . This allows
us to measure the overall shift in user 𝑢’s preferences. A larger Δ𝑡,𝑟𝑢
indicates a significant change in user preferences, implying a sub-
stantial preference shift between data blocks. Conversely, a smaller
Δ𝑡,𝑟𝑢 suggests that the user’s preferences have remained consistent,
making it beneficial to retain more of the previous knowledge.

4.2.2 Adaptive Replay Memory. To retain different amounts of
past knowledge for each user, we propose an adaptive approach
that dynamically adjusts the amount of replayed data based on
the preference shift Δ𝑡,𝑟𝑢 . Unlike existing replay-memory methods
[17, 21] that retain a fixed number of replay samples for all users,
our approach adjusts the retention dynamically based on preference
shifts. Users experiencing larger shifts retain fewer samples, while
those with smaller shifts preserve more, ensuring that the amount
of replayed knowledge is proportional to preference stability.

To achieve this, we define a user-wise consistency sampling rate
based on the preference shift Δ𝑡,𝑟𝑢 as follows:

𝛿
𝑡,𝑟
𝑢 = exp(−𝜖 · Δ𝑡,𝑟𝑢), (3)

where 𝜖 is a scaling hyperparameter. The value of 𝛿𝑡,𝑟𝑢 is inversely
proportional to Δ𝑡,𝑟𝑢 , allowing smaller sampling rates for larger
shifts and larger sampling rates for smaller shifts. We adopt the
exponential function due to its desirable properties for adaptive
sampling: it is monotonic, maps non-negative inputs to the inter-
val (0, 1], and requires no additional hyperparameters or clipping

Federated Continual Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

operations as needed in linear or sigmoid alternatives. Moreover,
the exponential function is widely used for computing probabil-
ities or weights that are either directly or inversely proportional
to input due to its smooth decay and compatibility with Gaussian
interpretation [16, 17].

Using this sampling rate, the adaptive replay memory 𝑀𝑡,𝑟
𝑢 is

constructed by sampling items from 𝑆𝑡−1𝑢 without replacement:

𝑀
𝑡,𝑟
𝑢 = SWOR

(
𝑆𝑡−1𝑢 , ⌊𝛿𝑡,𝑟𝑢 · |𝑆𝑡−1𝑢 |⌋

)
, (4)

where SWOR(𝐴,𝑘) denotes sampling𝑘 items from the set𝐴without
replacement.

4.2.3 Knowledge Distillation for Continual Learning. Due to
the CLRec constraint (the model update should be done only with
the current data block), the labels for items in𝑀𝑡,𝑟

𝑢 are not complete.
Therefore, to incorporate the previous knowledge from𝑀

𝑡,𝑟
𝑢 into

the currently trained model, we apply the knowledge distillation
technique (KD) [13]. We treat the model trained on D𝑡−1 as the
teacher and the model under training on D𝑡 as the student.

Since we focus on the implicit feedback scenario, we adopt binary
cross entropy for the KD. The KD loss for user 𝑢 and item 𝑖 in D𝑡
at round 𝑟 is defined as:

L𝑡,𝑟
𝐾𝐷
(𝑢) =

∑︁
𝑖∈𝑀𝑡,𝑟

𝑢

[
𝑦𝑡−1𝑢,𝑖 log𝑦𝑡,𝑟

𝑢,𝑖
+ (1 − 𝑦𝑡−1𝑢,𝑖) log(1 − 𝑦

𝑡,𝑟
𝑢,𝑖
)
]
, (5)

where 𝑦𝑡−1
𝑢,𝑖

represents the prediction from the model trained on
D𝑡−1, while 𝑦𝑡,𝑟

𝑢,𝑖
represents the predicted value for the model being

trained on D𝑡 during round 𝑟 .

4.2.4 Final Objective. Finally, the objective for user 𝑢 for D𝑡 at
round 𝑟 is defined as:

L𝑡,𝑟
𝑡𝑜𝑡𝑎𝑙
(𝑢) = L𝑡,𝑟

𝑅𝑒𝑐
(𝑢) + 𝜆𝐾𝐷L𝑡,𝑟𝐾𝐷 (𝑢), (6)

where 𝜆𝐾𝐷 is a hyperparameter controlling the contribution of the
KD loss. Since we consider an implicit feedback scenario, binary
cross entropy is used for L𝑅𝑒𝑐 . This objective enables user 𝑢 to
learn new preferences while appropriately retaining knowledge
from previous tasks.

4.3 Server-side Continual Learning
In this section, we propose server-side continual learning, a method
to preserve prior knowledge at the global server level. Since the
server has no access to user interaction data or private parameters,
it rely solely on public parameters. During training on D𝑡 , the
server detects knowledge shifts by comparing the public parame-
ters aggregated from users with those obtained from D𝑡−1. This
enables item-wise adaptive aggregation, ensuring the retention of
each item’s knowledge in an adaptive manner. To achieve this, the
server performs two key steps: pre-aggregation and item-wise
temporal mean. The procedure is described in Algorithm 2

4.3.1 Pre-aggregation. In this step, the server aggregates public
parameters trained on users’ private interaction data, to compute
global parameters using a naive aggregation approach:

𝑄
𝑡,𝑟
𝑔′ =

1
|U𝑡,𝑟 |

∑︁
𝑢∈U𝑡,𝑟

𝑄
𝑡,𝑟
𝑢 . (7)

Algorithm 1 Client-side Continual Learning

Function: ClientUpdate(𝑢,𝑄𝑡,𝑟𝑔 , 𝑡)

1: Set 𝑄𝑡,𝑟𝑢 ← 𝑄
𝑡,𝑟
𝑔

2: Set Φ𝑡,𝑟𝑢 with latest private parameter
3: for each epoch 𝑒 = 1, 2, ..., 𝐸 do
4: for batch 𝑏 ∈ D𝑡 (𝑢) do
5: Compute recommendation loss L𝑡,𝑟Rec (𝑢)
6: if 𝑡 > 0 then
7: Obtain𝑀𝑡,𝑟

𝑢 using Eq. 4
8: Compute distillation loss L𝑡,𝑟KD (𝑢) using Eq. 5
9: else
10: Set L𝑡,𝑟KD (𝑢) ← 0
11: end if
12: L𝑡,𝑟total (𝑢) ← L

𝑡,𝑟
Rec (𝑢) + 𝜆KD · L

𝑡,𝑟
KD (𝑢)

13: 𝑄
𝑡,𝑟
𝑢 ← 𝑄

𝑡,𝑟
𝑢 − 𝜂∇𝑄𝑡,𝑟

𝑢
L𝑡,𝑟total (𝑢)

14: Φ𝑡,𝑟𝑢 ← Φ𝑡,𝑟𝑢 − 𝜂∇Φ𝑡,𝑟
𝑢
L𝑡,𝑟total (𝑢)

15: end for
16: end for
17: return 𝑄𝑡,𝑟𝑢 to server

Algorithm 2 F3CRec – Overall Process
Initialize 𝑄0

𝑔

Initialize Φ𝑢 for all 𝑢 ∈ U0

1: for each task 𝑡 = 0, 1, . . . ,𝑇 do
2: if 𝑡 > 0 then
3: Set 𝑄𝑡𝑔 ← 𝑄𝑡−1𝑔

4: Initialize new item embeddings: 𝑄𝑡
𝑔,𝑖

for 𝑖 ∈ I𝑡+1 \ I𝑡

5: Initialize new users: Φ𝑢 for 𝑢 ∈ U𝑡+1 \ U𝑡
6: end if
7: for each round 𝑟 = 1, 2, . . . , 𝑅 do
8: U𝑡,𝑟 ← Server randomly selects a subset of clients
9: for each client 𝑢 ∈ U𝑡,𝑟 in parallel do
10: 𝑄

𝑡,𝑟
𝑢 ← ClientUpdate(𝑢,𝑄𝑡,𝑟𝑔 , 𝑡)

11: end for
12: Compute 𝑄𝑡,𝑟

𝑔′ ←
1

|U𝑡,𝑟 |
∑
𝑢∈U𝑡,𝑟 𝑄

𝑡,𝑟
𝑢

13: if 𝑡 = 0 then
14: Set 𝑄𝑡,𝑟+1𝑔 ← 𝑄

𝑡,𝑟
𝑔′

15: else
16: Obtain 𝑄𝑡,𝑟+1𝑔 using Eq.13
17: end if
18: end for
19: end for

This aggregated parameter𝑄𝑡,𝑟
𝑔′ represents the pre-aggregated global

parameter for round 𝑟 of D𝑡 . If deployed directly to users without
further processing, this would be aggregation-process of standard
FedRec frameworks [25, 37, 38, 40].

4.3.2 Item-wise Temporal Mean. Unlike client-side training
where private parameters are utilized, the server does not have ac-
cess to such private knowledge. This limitation makes it impossible
for the server to retain knowledge in the same way as clients, i.e.,
the server cannot make top-𝑁 lists for users. To overcome this, we
adopt a temporal mean [28], which enables knowledge retention

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Lim et al.

without relying on private parameters. A standard temporal mean,
however, applies the same weighting to all items, disregarding the
fact that each item’s knowledge evolves at a different rate.

To account for this, we measure the knowledge shift for each
item by comparing its embedding, which is updated based onD𝑡−1,
with the pre-aggregated embedding that is being updated based on
D𝑡 . New items introduced inD𝑡 are excluded from this calculation.
The knowledge shift of item 𝑖 is defined as:

𝜙
𝑡,𝑟
𝑖

=
1
√
𝑑
∥𝑄𝑡−1𝑔,𝑖 −𝑄

𝑡,𝑟
𝑔′,𝑖 ∥

2
2, (8)

where 𝑑 denotes the dimensionality of the item embeddings, while
𝑄𝑡−1
𝑔,𝑖

and 𝑄𝑡,𝑟
𝑔′,𝑖 represent the global item embedding of item 𝑖 ob-

tained from D𝑡−1 and the pre-aggregated global embedding up-
dated based on D𝑡 , respectively. We adopt the squared 𝐿2 distance
to quantify knowledge shift, as it is widely used in FedRec and
CLRec literature (e.g., to regularize global/personalized embedding
differences [39], or to apply embedding self-distillation [34]).

A larger 𝜙𝑡,𝑟
𝑖

indicates significant changes in the item 𝑖 , while a
smaller value suggests minimal change. Based on this, we propose
the item-wise temporal mean:

𝛾
𝑡,𝑟
𝑖

=
𝛽

1 + 𝜙𝑡,𝑟
𝑖

(9)

𝑄
𝑡,𝑟+1
𝑔,𝑖

= (1 − 𝛾𝑡,𝑟
𝑖
) ·𝑄𝑡,𝑟

𝑔′,𝑖 + 𝛾
𝑡,𝑟
𝑖
·𝑄𝑡−1𝑔,𝑖 , (10)

where 𝛽 ∈ (0, 1) is a hyperparameter that controls the sensitivity of
𝛾
𝑡,𝑟
𝑖

to changes in 𝜙𝑡,𝑟
𝑖

. Given that 𝜙𝑡,𝑟
𝑖

> 0, the resulting coefficient
𝛾
𝑡,𝑟
𝑖

always lies in the range (0, 𝛽], ensuring 𝛾𝑡,𝑟
𝑖

< 1. This guar-
antees that the update rule forms a valid convex combination for
temporal mean aggregation. The adaptive weight 𝛾𝑡,𝑟

𝑖
dynamically

adjusts the influence of historical item embeddings based on the
knowledge shift, without requiring explicit normalization.

To handle all items collectively, we define:

𝛾𝑡,𝑟 =

[
𝛽

1+𝜙𝑡,𝑟
1
, · · · , 𝛽

1+𝜙𝑡,𝑟

|𝐼𝑡−1 |
, 0, · · · , 0

]𝑇
∈ R |𝐼

𝑡 | . (11)

To match dimensions, zero padding is applied to 𝑄𝑡−1𝑔 :

𝑄
𝑡−1,Padding
𝑔 = Zero_Padding(𝑄𝑡−1𝑔 , |𝐼𝑡 | − |𝐼𝑡−1 |), (12)

where Zero_Padding(𝑄,𝐾) appends 𝐾 zero-initialized embeddings.
The final global parameter is computed as:

𝑄
𝑡,𝑟+1
𝑔 = (1 − 𝛾𝑡,𝑟) ·𝑄𝑡,𝑟

𝑔′ + 𝛾
𝑡,𝑟 ·𝑄𝑡−1,Padding𝑔 . (13)

5 Experiments
We demonstrate the effectiveness of F3CRec across four datasets
and three backbone FedRec frameworks. First, we present extensive
experimental results showing that F3CRec outperforms other CLRec
methods (Section 5.2). Additionally, we conduct both quantitative
and qualitative analyses to validate the rationale and superiority
of each proposed strategy (Sections 5.3 and 5.4). We also perform
hyperparameter sensitivity analysis under various configurations
(Section 5.5). Furthermore, we perform supplementary experiments
to evaluate the extent to which additional privacy-preserving con-
siderations impact performance (Section 5.6).

Table 1: Data block statistics after preprocessing
Data Blocks D0 D1 D2 D3

ML-100K
of accumulated users 587 697 827 943
of accumulated items 1,136 1,146 1,148 1,152

of interactions 58,771 13,060 13,060 13,062
sparsity 91.19% 98.36% 98.62% 98.80%

ML-Latest-Small
of accumulated users 374 466 543 609
of accumulated items 1,982 2,189 2,250 2,269

of interactions 48,665 10,814 10,814 10,816
sparsity 93.43% 98.94% 99.11% 99.22%

Lastfm-2K
of accumulated users 834 971 1,107 1,165
of accumulated items 4,112 4,188 4,239 4,259

of interactions 41,415 9,203 9,203 9,204
sparsity 98.79% 99.77% 99.80% 99.81%

HetRec2011
of accumulated users 1,177 1,497 1,825 2,113
of accumulated items 6,128 6,408 6,643 6,829

of interactions 505,146 112,254 112,254 112,254
sparsity 93.00% 98.83% 99.07% 99.22%

5.1 Experimental Setup
Datasets. We employ four public real-world datasets: ML-100K
[10], ML-Latest-Small [10], Lastfm-2K [3], and HetRec2011 [3], all
containing timestamped interactions. To ensure sufficient activity,
we filter out users/items with fewer than 10 interactions (5 for
Lastfm-2K). To simulate non-stationary data streams, each dataset is
partitioned into four blocks. The first 60% of interactions forms the
base block (D0), while the remaining 40% is chronologically divided
into three incremental blocks (D1,D2,D3) based on chronological
order following prior works [17, 30, 31, 34]. For each incremental
block, user interactions are randomly split into training, validation,
and test sets using an 80%/10%/10% ratio. Table 1 summarizes the
detailed statistics for each block.
Evaluation Metrics. During the training of each data block, we
conduct evaluations on users who had interactionswithin that block
and performed full-ranking evaluations to ensure fair comparisons.
Similar to other CLRec frameworks, we assess performance using
NDCG@20 (N@20) and Recall@20 (R@20), applying them after
completing the training for the corresponding block [6, 17, 31, 34].
FedRec Backbones. We evaluate F3CRec using three represen-
tative FedRec backbones: a latent factor model [4] and two deep
learning-based models [25, 38]. Specifically, we consider FedMF
[4], a federated extension of matrix factorization [15] with private
user embeddings and public item embeddings; FedNCF [25], a
federated adaptation of neural collaborative filtering [11] where
user embeddings and MLP layers are trained locally while item
embeddings are collaboratively updated; and PFedRec [38], a per-
sonalized federated recommendation model that learns global item
embeddings on the server and adapts them to individual data via
local fine-tuning. These models are widely used as baselines for
federated recommendation [12, 38, 39].
Baselines. Since FCRec is a novel task newly proposed in this
paper, there are no directly related baselines. Thus, we evaluate
the performance by applying various CLRec baselines to the Fe-
dRec backbones. Specifically, we consider FT (Fine-Tuning) that
updates the model on new data using the original loss; Reg, a
regularization-based method that adds an MSE loss to constrain
parameter deviation from the previous task; KD, a knowledge dis-
tillation approach that uses the Top-N item list obtained from the
previous model; RLP2 [43], a replay-based method with an error
memory that stores mispredictions for self-correction, applied in
FedRec with user-wise memory due to privacy constraints; and
SPP [17] that leverages a stability-plasticity proxy and ranking

Federated Continual Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 2: Performance comparison across four datasets and three incremental blocks. The best results are highlted in bold and
second-best are underlined. Improv (%) represents the relative performance improvement of various methods over the result of
fine tuning. OOM indicates the model ran out-of-memory. * denotes 𝑝 ≤ 0.05 for the paired t-test on the best baseline on N@20.

Dataset N@20 FedMF FedNCF PFedRec
FT Reg KD RLP2 SPP F3CRec FT Reg KD RLP2 SPP F3CRec FT Reg KD RLP2 SPP F3CRec

ML-100k

D1 0.0794 0.0904 0.0918 0.0836 0.0878 0.0933 0.1005 0.1074 0.1039 0.1044 0.1015 0.1136 0.0957 0.0909 0.0945 0.0962 0.0942 0.0983
D2 0.0768 0.0876 0.0824 0.0787 0.0838 0.0885 0.0754 0.0867 0.0808 0.0677 0.0794 0.0917 0.0881 0.0761 0.0858 0.0867 0.0902 0.0877
D3 0.1002 0.1078 0.1071 0.1030 0.1117 0.1284 0.1136 0.1225 0.1222 0.1191 0.1250 0.1240 0.1137 0.1134 0.1168 0.1192 0.1231 0.1281
Avg 0.0855 0.0953 0.0938 0.0885 0.0945 0.1034* 0.0965 0.1056 0.1023 0.0971 0.1020 0.1098* 0.0992 0.0935 0.0990 0.1007 0.1025 0.1047*

Improv. – 11.49% 9.72% 3.51% 10.52% 21.00% – 9.40% 6.04% 0.59% 5.69% 13.76% – -5.73% -0.14% 1.54% 3.36% 5.57%

ML-Latest-Small

D1 0.0544 0.0674 0.0656 0.0681 0.0648 0.0652 0.0567 0.0616 0.0632 0.0566 0.0634 0.0627 0.0727 0.0716 0.0785 0.0643 0.0799 0.0689
D2 0.0507 0.0504 0.0659 0.0617 0.0579 0.0751 0.0466 0.0582 0.0761 0.0641 0.0716 0.0836 0.0732 0.0713 0.0687 0.0655 0.0724 0.0781
D3 0.0670 0.0834 0.0609 0.0591 0.0790 0.0871 0.0731 0.0601 0.0738 0.0787 0.0796 0.0729 0.0656 0.0805 0.0744 0.0748 0.0733 0.0878
Avg 0.0574 0.0670 0.0641 0.0629 0.0672 0.0758* 0.0588 0.0600 0.0711 0.0665 0.0715 0.0731* 0.0705 0.0745 0.0739 0.0682 0.0752 0.0783*

Improv. – 16.83% 11.76% 9.70% 17.15% 32.12% – 2.03% 20.89% 13.13% 21.69% 24.33% – 5.59% 4.73% -3.28% 6.67% 10.99%

Lastfm-2k

D1 0.0427 0.0570 0.0499 0.0464 0.0479 0.0616 0.0378 0.0476 0.0448 0.0453 0.0536 0.0469 0.0495 0.0493 0.0523 0.0522 0.0554 0.0612
D2 0.0498 0.0497 0.0540 0.0545 0.0603 0.0555 0.0422 0.0490 0.0441 0.0485 0.0529 0.0536 0.0485 0.0496 0.0562 0.0554 0.0580 0.0593
D3 0.0489 0.0595 0.0502 0.0597 0.0475 0.0629 0.0448 0.0399 0.0482 0.0382 0.0429 0.0514 0.0465 0.0387 0.0467 0.0483 0.0481 0.0461
Avg 0.0471 0.0554 0.0513 0.0535 0.0519 0.0600* 0.0416 0.0455 0.0440 0.0498 0.0506 0.0533 0.0482 0.0459 0.0518 0.0520 0.0539 0.0555*

Improv. – 17.54% 8.93% 13.58% 10.10% 27.30% – 9.42% 9.82% 5.80% 19.78% 21.71% – -4.80% 7.46% 7.88% 11.80% 15.30%

HetRec2011

D1 0.0764 0.0825 0.0803 OOM 0.0785 0.0836 0.0696 0.0718 0.0774 OOM 0.0742 0.0817 0.0848 0.0740 0.0846 OOM 0.0880 0.0846
D2 0.0716 0.0639 0.0681 – 0.0668 0.0757 0.0678 0.0501 0.0708 – 0.0615 0.0713 0.0791 0.0540 0.0727 – 0.0663 0.0817
D3 0.0941 0.0883 0.0954 – 0.1004 0.1004 0.0848 0.0594 0.0945 – 0.1055 0.0931 0.1047 0.0529 0.1043 – 0.1020 0.1074
Avg 0.0807 0.0782 0.0813 – 0.0819 0.0866* 0.0740 0.0604 0.0809 – 0.0804 0.0820* 0.0896 0.0603 0.0872 – 0.0855 0.0913*

Improv. – -3.01% 0.73% – 1.50% 7.3% – -18.39% 9.26% – 8.56% 10.78% – -32.68% -2.64% – -4.58% 1.89%

Dataset R@20 FedMF FedNCF PFedRec
FT Reg KD RLP2 SPP F3CRec FT Reg KD RLP2 SPP F3CRec FT Reg KD RLP2 SPP F3CRec

ML-100k

D1 0.1270 0.1411 0.1512 0.1391 0.1417 0.1564 0.1934 0.1969 0.1785 0.1821 0.1851 0.2016 0.1588 0.1485 0.1539 0.1619 0.1532 0.1497
D2 0.1319 0.1447 0.1422 0.1363 0.1351 0.1531 0.1380 0.1512 0.1441 0.1231 0.1415 0.1681 0.1556 0.1394 0.1418 0.1526 0.1547 0.1564
D3 0.1563 0.1648 0.1625 0.1735 0.1747 0.1944 0.1686 0.1912 0.1866 0.1877 0.1922 0.2076 0.1977 0.1980 0.1892 0.1941 0.1973 0.2230
Avg 0.1384 0.1502 0.1520 0.1496 0.1505 0.1680* 0.1666 0.1797 0.1697 0.1643 0.1729 0.1924* 0.1707 0.1620 0.1616 0.1695 0.1684 0.1764*

Improv. – 8.51% 9.79% 8.12% 8.73% 21.36% – 7.87% 1.86% -1.40% 3.78% 15.48% – -5.11% -5.33% -0.69% -1.36% 3.32%

ML-Latest-Small

D1 0.0724 0.0957 0.0868 0.0942 0.0933 0.0965 0.0780 0.0824 0.0906 0.0822 0.0982 0.1025 0.1023 0.1170 0.1174 0.0927 0.1115 0.0964
D2 0.0762 0.0771 0.1125 0.0932 0.0936 0.1126 0.0573 0.0754 0.1114 0.0824 0.1178 0.1277 0.1030 0.0924 0.1005 0.0949 0.1060 0.1224
D3 0.1066 0.1269 0.0924 0.0852 0.1277 0.1158 0.1018 0.0892 0.1028 0.1162 0.1169 0.1112 0.0958 0.1116 0.1147 0.1146 0.1034 0.1149
Avg 0.0851 0.0999 0.0972 0.0909 0.1049 0.1083* 0.0790 0.0823 0.1016 0.0936 0.1110 0.1138* 0.1004 0.1070 0.1109 0.0974 0.1070 0.1113*

Improv. – 17.42% 14.27% 6.81 23.29% 27.30% – 4.18% 28.54% 18.42% 40.46% 43.98% – 6.61% 10.48% -2.97% 6.60% 10.87%

Lastfm-2k

D1 0.0903 0.0907 0.0909 0.0929 0.0868 0.0964 0.0814 0.0955 0.0909 0.0842 0.0925 0.1066 0.0825 0.0937 0.0830 0.0882 0.0897 0.1109
D2 0.0858 0.0802 0.0958 0.0943 0.1104 0.0997 0.0737 0.0940 0.0768 0.0868 0.0978 0.0960 0.0847 0.0867 0.0952 0.1007 0.0988 0.1048
D3 0.0825 0.1006 0.0943 0.0968 0.0918 0.1062 0.0851 0.0776 0.0938 0.0794 0.0934 0.0977 0.0931 0.0809 0.0817 0.1046 0.0925 0.0929
Avg 0.0862 0.0905 0.0937 0.0947 0.0964 0.1008* 0.0801 0.0890 0.0872 0.0834 0.0945 0.1001* 0.0868 0.0871 0.0867 0.0978 0.0937 0.1029

Improv. – 5.02% 8.68% 9.86% 11.81% 16.91% – 11.18% 8.89% 4.20% 18.08% 24.98% – 0.37% -0.14% 12.72% 7.93% 18.53%

HetRec2011

D1 0.1092 0.1068 0.1146 OOM 0.1078 0.1162 0.0930 0.0859 0.1062 OOM 0.1047 0.1070 0.1173 0.0953 0.1129 OOM 0.1241 0.1204
D2 0.0999 0.0862 0.0973 – 0.0966 0.1048 0.0932 0.0780 0.0950 – 0.0829 0.0958 0.1116 0.0839 0.1041 – 0.0902 0.1052
D3 0.1086 0.0938 0.1097 – 0.1114 0.1125 0.1040 0.0755 0.1046 – 0.1029 0.1032 0.1086 0.0684 0.1090 – 0.1086 0.1131
Avg 0.1059 0.0956 0.1072 – 0.1053 0.1125* 0.0967 0.0798 0.1019 – 0.1010 0.1034* 0.1125 0.0825 0.1087 – 0.1076 0.1129

Improv. – -9.72% 1.25% – -0.60% 6.26% – -17.52% 5.38% – 3.51% 5.45% – -26.63% -3.38% – -4.32% 0.35%

Figure 3: Improvement comparison of F3CRec and the second-
best performing methods.

discrepancy-based replay memory, with proxies applied to both
private (client) and public (server) parameters in the FL setting.

ImplementationDetails.All training and inference are conducted
using PyTorch with CUDA on an RTX 3090 GPU and AMD EPYC
7313 CPU. We first train a base block model, then incrementally
train on each data block (D1,D2,D3). Each client performs 𝐸 = 1
local epoch per round. We use SGD optimizer, with learning rates
selected per backbone: FedMF uses {0.1, 0.5, 1}, while FedNCF and
PFedRec use [0.01,0.1] (step 0.01). 𝜆KD is tuned from [1e-5,1] in
powers of 10. 𝑁 is set to 30 or 50. 𝜖 is searched as follows: ML-100K
and HetRec2011 use [1e-3,9e-3]; ML-Latest-Small [1e-5,9e-5]; and
Lastfm-2K [1e-4,9e-4], all with step 1e-𝑥 . 𝛽 is tuned in [0,1] (step
0.05). Embedding dimension is fixed to 32 and batch size to 512.
Parameter transmission is unencrypted FedNCF and PFedRec use a
1-layer MLP. All baseline-specific hyperparameters follow original
papers; for Reg and KD, we use same search ranges as F3CRec.

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Lim et al.

Table 3: Results of various ablations on client-side.
Dataset Method N@20 Decrease. R@20 Decrease.

ML-100k
F3CRec 0.1034 – 0.1680 –

w/o c.c 0.0969 -6.35% 0.1509 -10.17%
w/o a.r.m 0.0996 -3.71% 0.1544 -8.07%
FT 0.0855 -17.36% 0.1384 -17.60%

Lastfm-2K
F3CRec 0.0600 – 0.1008 –

w/o c.c 0.0536 -10.65% 0.0966 -4.14%
w/o a.r.m 0.0534 -11.06% 0.0949 -5.81%
FT 0.0471 -21.45% 0.0862 -14.46%

Table 4: Performance degradation rate on previous tasks for
static and dynamic users.

Dataset Method F3CRec w/o a.r.m SPP

ML-100K static user 0.5583 0.6674 0.7039
dynamic user 0.7162 0.7552 0.7860

Lastfm-2K static user 0.2993 0.2772 0.2965
dynamic user 0.3374 0.4567 0.5480

5.2 Main Performance
Table 2 reports the performance of CLRec methods across multiple
data blocks on four datasets, and Figure 3 compares F3CRec with the
second-best methods. Overall, F3CRec shows substantial improve-
ments across three FedRec backbones with diverse architectures
and optimization strategies.
Misalignment of existing CLRec with FedRec. Table 2 shows
that F3CRec outperforms RLP2 and SPP, which adapt centralized
CLRec methods to FedRec. F3CRec surpasses RLP2 by 4% to 22%.
While RLP2 leverages global knowledge for modeling preference
shifts, FL constraints limit it to local knowledge, leading to per-
formance drops. In contrast, F3CRec captures preference shifts
individually and item knowledge shifts globally, yielding superior
performance. SPP achieves the best baseline performance in about
half of the cases, yet F3CRec still outperforms SPP by 2% to 16%.
Unlike SPP’s uniform retention across users and items, F3CRec uses
personalized retention at the client and item-specific weighting
at the server, enhancing effectiveness. F3CRec also outperforms
Reg and KD, which rely solely on user-specific data, with gains
of 4%–50% and 1%–33%, respectively. Reg applies a naive reten-
tion approach without considering preferences, whereas KD as-
sumes equal retention for all users. F3CRec explicitly accounts for
individual preference shifts, leading to superior results. Overall,
existing CLRec methods are misaligned with FedRec due to neglect-
ing decentralization. F3CRec effectively addresses this by retaining
knowledge on both client and server sides.
Performance variability across FedRec models. While F3CRec
improves all backbones, FedMF and FedNCF see larger gains than
PFedRec, likely due to PFedRec’s separate updates of Φ𝑢 and 𝑄𝑢 ,
which may disrupt retention. Nonetheless, F3CRec consistently
improves performance across all backbones.

5.3 Closer Look on Client-side
5.3.1 Ablation Study on Client-side Continual Learning. We
compare two variants: (1) w/o c.c, which omits client-side continual
learning, applying only server-side learning with item-wise tempo-
ral mean; and (2) w/o a.r.m, which uses a fixed top-𝑁 item replay
memory instead of adaptively determining the replay memory size

Table 5: Performance on previous task for static and dynamic
users.

Dataset Method F3CRec w/o a.r.m SPP

ML-100K static user 0.0788 0.0783 0.0697
dynamic user 0.0620 0.0592 0.0536

Lastfm-2K static user 0.0681 0.0681 0.0634
dynamic user 0.0263 0.0334 0.0368

Table 6: Results of various ablations on server-side.
Dataset Method N@20 Decrease. R@20 Decrease.

ML-100k
F3CRec 0.1034 – 0.1680 –

w/o s.c 0.0941 -8.96% 0.1491 -11.25%
w/o i.t.m 0.0993 -4.01% 0.1569 -6.60%
FT 0.0855 -17.36% 0.1384 -17.60%

Lastfm-2K
F3CRec 0.0600 – 0.1008 –

w/o s.c 0.0545 -9.15% 0.0920 -8.68%
w/o i.t.m 0.0545 -9.19 % 0.0961 -4.58%
FT 0.0471 -21.45% 0.0862 -14.46%

per user. In the latter, knowledge distillation applies to all top-𝑁
items from the previous block.

Table 3 shows results of the ablation study using FedMF with
the ML-100K and Lastfm-2K datasets. Excluding adaptive replay
memory decreases performance, and distilling knowledge from all
top-𝑁 items without accounting for user preference shifts similarly
reduces effectiveness.

5.3.2 Analysis on Adaptive ReplayMemory. We validate whe-
ther the proposed preference shift measure (Sec 4.2.1) effectively
distinguishes static users and dynamic users. We calculate the pref-
erence shift (Eq.2) for users with histories in both D0 and D1 after
the first training round on D1. Users in the bottom 20% of pref-
erence shift are labeled static, and those in the top 20% dynamic.
We then evaluate preference changes. The model trained on D0 is
first evaluated on its test set of the same block. The model is then
further trained on D1 and re-evaluated on the test set of D0 to
assess knowledge preservation (Table 5) and performance degrada-
tion (Table 4), which is measured as 𝑎0,0−𝑎1,0𝑎0,0

, where 𝑎 (𝑡,𝑠) denotes
performance when trained on D𝑡 and evaluated on D𝑠 . The exper-
iments are conducted using FedMF with the N@20 metric on the
ML-100K and Lastfm-2K datasets.

Results in Table 4 and 5 demonstrate that the proposedmethod ef-
fectively distinguishes static and dynamic users. Static users consis-
tently achieve higher N@20 and lower preference degradation rates
while dynamic users show the opposite trend. This demonstrates
the effectiveness of the ranking discrepancy-based preference shift
measure and highlights its capability for adaptive, user-specific con-
tinual learning leveraging solely users’ own data without others.

5.4 Closer Look for Server-side
5.4.1 Ablation Study on item-wise temporal mean. Table 6
shows the ablation study of server-side continual learning with
FedMF on ML-100K and Lastfm-2K. We evaluate two variants: (1)
w/o s.c, where the server performs only pre-aggregation without
preserving prior knowledge; and (2) w/o i.t.m, where uniform tem-
poral mean is applied across all items with fixed weight (i.e., 𝛽).

Both lead to performance drops, confirming the importance of
item-wise temporal mean. In particular, w/o s.c shows that omitting

Federated Continual Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 7: Validation of item-wise temporal mean compared to
same weight aggregation with static and dynamic items.

Dataset Type static items dynamic items diff

ML-100k F3CRec 0.0312 0.3038 0.2726
w/o i.t.m 0.0470 0.2954 0.2484

Lastfm-2K F3CRec 0.0516 0.5403 0.4887
w/o i.t.m 0.0691 0.3305 0.2614

Figure 4: Effects of FedMF’s hyperparameters, 𝜖, 𝜆𝐾𝐷 , and 𝛽
on N@20 across four datasets.

server-side retention harms performance, while w/o i.t.m highlights
the limitations of uniform temporal mean compared to item-specific
weighting. These results validate the utility of item-wise temporal
mean in server-side continual learning.

5.4.2 Analysis on Item-wise Temporal Mean. Table 7 validates
the effectiveness of item-wise temporal mean (Sec 4.3.2) with FedMF.
Static and dynamic items are defined as the bottom and top 20%
in 𝜙𝑖 (Eq. 8), respectively. We evaluate users involved in training
on D𝑡−1 but not on D𝑡 , enabling fair evaluation. Dynamic items
with high 𝜙𝑖 are expected to show larger shifts in collaborative
filtering (CF) signals compared to the previous data block, while
static items remain stable. To verify this, we measure the rate of
change in item rankings, calculated as |𝑟𝑎𝑛𝑘𝑡−1

𝑢,𝑖
−𝑟𝑎𝑛𝑘𝑡

𝑢,𝑖
|/𝑟𝑎𝑛𝑘𝑡−1

𝑢,𝑖
,

for users who are trained on D𝑡−1 but not on D𝑡 . The reported
metric is averaged over three consecutive transitions: D1 to D0,
D2 to D1, and D3 to D2.

Table 7 shows that static items consistently have lower ranking
change rates than dynamic ones, supporting the use of 1

1+𝜙𝑖 for
distinguishing them. Compared to uniform temporal mean, item-
wise temporal mean yields lower change rates for static items and
higher for dynamic ones, indicating better preservation of stable CF
signals and responsiveness to dynamic shifts. Lastly, the larger gap
in ranking change rates between static and dynamic items under
adaptive aggregation highlights its effectiveness in adjusting CF
signal reflection and preserving user preferences.

5.5 Hyperparameter Study
Figure 4 illustrates the effects of hyperparameters (𝜖 , 𝜆𝐾𝐷 , 𝛽) on
FedMF performance (N@20), averaged over D1-D3. The sampling
factor 𝜖 , which controls the amount of retained past data, is dataset-
specific in scale (ML-100K, HetRec2011: 10−3; Lastfm-2K: 10−4;
ML-Latest-Small: 10−5). While ML-100K exhibits irregular trends,
other datasets show improved performance with larger 𝜖 , indicat-
ing that reducing reliance on past data aids adapting preference
shifts. The KD coefficient 𝜆𝐾𝐷 improves performance at moderate
values but degrades beyond certain thresholds—except for ML-
100K—suggesting that overemphasis on prior knowledge hinders
adaptation to new data. The parameter 𝛽 , regulating retention at the

Table 8: Performance with various noise intensity 𝜆
Dataset Noise ratio 𝜆 = 0 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 𝜆 = 0.4 𝜆 = 0.5

ML-100K NDCG@20 0.1034 0.1021 0.0959 0.0951 0.1004 0.0950
Recall@20 0.1680 0.1661 0.1584 0.1620 0.1633 0.1643

ML-Latest-Small NDCG@20 0.0758 0.0613 0.0632 0.0658 0.0602 0.0614
Recall@20 0.1083 0.0870 0.0945 0.0936 0.0776 0.0836

Lastfm-2K NDCG@20 0.0600 0.0530 0.0526 0.0516 0.0501 0.0493
Recall@20 0.1008 0.0978 0.0969 0.1018 0.0929 0.0922

HetRec2011 NDCG@20 0.0872 0.0829 0.0854 0.0811 0.0824 0.0794
Recall@20 0.1105 0.1055 0.1055 0.1019 0.1024 0.1053

server, benefits ML-100K with stable preferences, but higher values
harm performance in datasets with greater shifts (ML-Latest-Small,
Lastfm-2K, and HetRec2011), where reduced retention enhances
adaptability. Overall, hyperparameter tuning has a modest impact,
typically varying performance by less than 0.01 in N@20. Thus,
maintaining hyperparameters within reasonable ranges ensures sta-
ble performance without extensive optimization, balancing stability
and adaptability in federated continual recommendation scenarios.

5.6 Privacy-Preserving
Although private parameters and interaction data remain private
in FL settings, information leakage may occur when transmitting
public parameters to the server. Given a user 𝑢 with 𝑛+𝑢 positive
and 𝑛−𝑢 negative items, the server can compare 𝑄𝑡,𝑟−1𝑔 and 𝑄𝑡,𝑟𝑢
to estimate the probability of an item being positive as 𝑛+𝑢/(𝑛+𝑢 +
𝑛−𝑢), compromising privacy. To mitigate this, we add zero-mean
Laplace noise to user updates before transmission: 𝑄𝑡,𝑟𝑢 = 𝑄

𝑡,𝑟
𝑢 +

Laplace(0, 𝜆), where 𝜆 controls the noise intensity. While not a
formal local differential privacy (LDP) mechanism, this strategy is
loosely motivated by LDP principles [5, 38, 39]. We evaluate the
performance of F3CRec with FedMF under varying noise intensities
𝜆 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} across four datasets, averaged over
all data blocks (Table 8). Results show that even with stronger
noise, performance degradation remains low, indicating our method
reduces privacy leakage during aggregation without sacrificing
utility.

6 Conclusion
We argue that existing CLRec methods are misaligned with the FL
setting and that no prior work explicitly addresses this gap. To this
end, we propose a new task, FCRec, and present F3CRec—the first
framework designed for FCRec. F3CRec incorporates two key com-
ponents: Adaptive Replay Memory, which leverages user-specific
preference shifts for selective client-side retention, and Item-wise
Temporal Mean, which adaptively aggregates item embeddings
at the server for task-aware knowledge preservation. Extensive
experiments confirm the superiority of F3CRec under federated
privacy constraints, and further analysis highlights its effectiveness
in capturing dynamic, user- and item-level shifts.

7 Acknowledgement
Thisworkwas supported by IITP grant funded by theMSIT (No.2018-
0-00584, RS-2019-II191906), the NRF grand funded by the MSIT
(South Korea, No. RS-2024-00335873, RS-2023-00217286).

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Lim et al.

8 GenAI Usage Disclosure
To enhance the manuscript’s clarity and style, we used a genera-
tive language model (GPT 4o) to assist with grammar correction,
academic expression, and sentence fluency, based on the authors’
original draft. However, all core ideas, including the main (techni-
cal) contributions, method design, experimental setup, and analysis,
were entirely conceived and developed by the authors. All figures,
including method diagrams and experimental results, were cre-
ated solely by the authors without any assistance from generative
models.

References
[1] MuhammadAmmad-Ud-Din, Elena Ivannikova, SuleimanAKhan,Were Oyomno,

Qiang Fu, Kuan Eeik Tan, and Adrian Flanagan. 2019. Federated collaborative
filtering for privacy-preserving personalized recommendation system. arXiv
preprint arXiv:1901.09888 (2019).

[2] Guohao Cai, Jieming Zhu, Quanyu Dai, Zhenhua Dong, Xiuqiang He, Ruiming
Tang, and Rui Zhang. 2022. Reloop: A self-correction continual learning loop
for recommender systems. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2692–2697.

[3] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd Workshop on
Information Heterogeneity and Fusion in Recommender Systems (HetRec 2011).
In Proceedings of the 5th ACM conference on Recommender systems (Chicago, IL,
USA) (RecSys 2011). ACM, New York, NY, USA.

[4] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. 2020. Secure federated matrix
factorization. IEEE Intelligent Systems 36, 5 (2020), 11–20.

[5] Woo-Seok Choi, Matthew Tomei, Jose Rodrigo Sanchez Vicarte, Pavan Kumar
Hanumolu, and Rakesh Kumar. 2018. Guaranteeing Local Differential Privacy on
Ultra-Low-Power Systems. In 2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA). 561–574. doi:10.1109/ISCA.2018.00053

[6] Jaime Hieu Do and Hady W Lauw. 2023. Continual Collaborative Filtering
Through Gradient Alignment. In Proceedings of the 17th ACM Conference on
Recommender Systems. 1133–1138.

[7] Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and
Qi Zhu. 2022. Federated Class-Incremental Learning. arXiv:2203.11473 [cs.LG]
https://arxiv.org/abs/2203.11473

[8] Prachi Garg, Rohit Saluja, Vineeth N Balasubramanian, Chetan Arora, Anbumani
Subramanian, and C. V. Jawahar. 2021. Multi-Domain Incremental Learning for
Semantic Segmentation. arXiv:2110.12205 [cs.CV] https://arxiv.org/abs/2110.
12205

[9] Lei Guo, Ziang Lu, Junliang Yu, Quoc Viet Hung Nguyen, and Hongzhi Yin. 2024.
Prompt-enhanced Federated Content Representation Learning for Cross-domain
Recommendation. In Proceedings of the ACM on Web Conference 2024. 3139–3149.

[10] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[12] Xinrui He, Shuo Liu, Jacky Keung, and Jingrui He. 2024. Co-clustering for
Federated Recommender System. In Proceedings of the ACM on Web Conference
2024. 3821–3832.

[13] Geoffrey Hinton. 2015. Distilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531 (2015).

[14] Ching-Yi Hung, Cheng-Hao Tu, Cheng-EnWu, Chien-Hung Chen, Yi-Ming Chan,
and Chu-Song Chen. 2019. Compacting, Picking and Growing for Unforgetting
Continual Learning. InAdvances in Neural Information Processing Systems, H.Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2019/file/3b220b436e5f3d917a1e649a0dc0281c-Paper.pdf

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[16] Wonbin Kweon, SeongKu Kang, and Hwanjo Yu. 2021. Bidirectional distillation
for top-K recommender system. In Proceedings of the Web Conference 2021. 3861–
3871.

[17] Gyuseok Lee, SeongKu Kang, Wonbin Kweon, and Hwanjo Yu. 2024. Continual
Collaborative Distillation for Recommender System. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 1495–1505.

[18] Yichen Li, Wenchao Xu, Haozhao Wang, Ruixuan Li, Yining Qi, and Jingcai Guo.
2024. Personalized Federated Domain-Incremental Learning based on Adaptive
Knowledge Matching. arXiv:2407.05005 [cs.LG] https://arxiv.org/abs/2407.05005

[19] Sichun Luo, Yuanzhang Xiao, Xinyi Zhang, Yang Liu, Wenbo Ding, and Linqi
Song. 2024. Perfedrec++: Enhancing personalized federated recommendation

with self-supervised pre-training. ACM Transactions on Intelligent Systems and
Technology 15, 5 (2024), 1–24.

[20] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[21] Fei Mi, Xiaoyu Lin, and Boi Faltings. 2020. Ader: Adaptively distilled exem-
plar replay towards continual learning for session-based recommendation. In
Proceedings of the 14th ACM Conference on Recommender Systems. 408–413.

[22] Khalil Muhammad, QinqinWang, Diarmuid O’Reilly-Morgan, Elias Tragos, Barry
Smyth, Neil Hurley, James Geraci, and Aonghus Lawlor. 2020. Fedfast: Going
beyond average for faster training of federated recommender systems. In Pro-
ceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining. 1234–1242.

[23] Ngoc-Hieu Nguyen, Tuan-Anh Nguyen, Tuan Nguyen, Vu Tien Hoang, Dung D
Le, and Kok-Seng Wong. 2024. Towards Efficient Communication and Secure
Federated Recommendation System via Low-rank Training. In Proceedings of the
ACM on Web Conference 2024. 3940–3951.

[24] Stuart L Pardau. 2018. The california consumer privacy act: Towards a european-
style privacy regime in the united states. J. Tech. L. & Pol’y 23 (2018), 68.

[25] Vasileios Perifanis and Pavlos S Efraimidis. 2022. Federated neural collaborative
filtering. Knowledge-Based Systems 242 (2022), 108441.

[26] Liang Qu, Ningzhi Tang, Ruiqi Zheng, Quoc Viet Hung Nguyen, Zi Huang, Yuhui
Shi, and Hongzhi Yin. 2023. Semi-decentralized federated ego graph learning for
recommendation. In Proceedings of the ACM Web Conference 2023. 339–348.

[27] Zehua Sun, Yonghui Xu, Yong Liu, Wei He, Lanju Kong, Fangzhao Wu, Yali Jiang,
and Lizhen Cui. 2024. A survey on federated recommendation systems. IEEE
Transactions on Neural Networks and Learning Systems (2024).

[28] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. Advances in neural information processing systems 30 (2017).

[29] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[30] Yuening Wang, Yingxue Zhang, and Mark Coates. 2021. Graph structure aware
contrastive knowledge distillation for incremental learning in recommender
systems. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 3518–3522.

[31] Yuening Wang, Yingxue Zhang, Antonios Valkanas, Ruiming Tang, Chen Ma,
Jianye Hao, and Mark Coates. 2023. Structure aware incremental learning with
personalized imitation weights for recommender systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 4711–4719.

[32] Max Welling. 2009. Herding dynamical weights to learn. In Proceedings of the
26th annual international conference on machine learning. 1121–1128.

[33] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing
Xie. 2022. A federated graph neural network framework for privacy-preserving
personalization. Nature Communications 13, 1 (2022), 3091.

[34] Yishi Xu, Yingxue Zhang,Wei Guo, Huifeng Guo, Ruiming Tang, andMark Coates.
2020. Graphsail: Graph structure aware incremental learning for recommender
systems. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 2861–2868.

[35] Bo Yan, Yang Cao, Haoyu Wang, Wenchuan Yang, Junping Du, and Chuan Shi.
2024. Federated heterogeneous graph neural network for privacy-preserving
recommendation. In Proceedings of the ACM on Web Conference 2024. 3919–3929.

[36] Wei Yuan, Chaoqun Yang, Quoc Viet Hung Nguyen, Lizhen Cui, Tieke He, and
Hongzhi Yin. 2023. Interaction-level membership inference attack against fed-
erated recommender systems. In Proceedings of the ACM Web Conference 2023.
1053–1062.

[37] Chunxu Zhang, Guodong Long, Hongkuan Guo, Xiao Fang, Yang Song, Zhao-
jie Liu, Guorui Zhou, Zijian Zhang, Yang Liu, and Bo Yang. 2024. Federated
Adaptation for Foundation Model-based Recommendations. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence. 5453–5461.

[38] Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang, Chengqi
Zhang, and Bo Yang. 2023. Dual personalization on federated recommendation.
arXiv preprint arXiv:2301.08143 (2023).

[39] Chunxu Zhang, Guodong Long, Tianyi Zhou, Zijian Zhang, Peng Yan, and Bo
Yang. 2024. GPFedRec: Graph-guided personalization for federated recommenda-
tion. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. 4131–4142.

[40] Chunxu Zhang, Guodong Long, Tianyi Zhou, Zijian Zhang, Peng Yan, and Bo
Yang. 2024. When Federated Recommendation Meets Cold-Start Problem: Sepa-
rating Item Attributes and User Interactions. In Proceedings of the ACM on Web
Conference 2024. 3632–3642.

[41] Kai Zhong, ZhengpingDing, Haifeng Zhang, Hongtian Chen, and Enrico Zio. 2024.
Simultaneous Fault Diagnosis and Size Estimation Using Multitask Federated
Incremental Learning. IEEE Transactions on Reliability (2024), 1–12. doi:10.1109/
TR.2024.3402308

https://doi.org/10.1109/ISCA.2018.00053
https://arxiv.org/abs/2203.11473
https://arxiv.org/abs/2203.11473
https://arxiv.org/abs/2110.12205
https://arxiv.org/abs/2110.12205
https://arxiv.org/abs/2110.12205
https://proceedings.neurips.cc/paper_files/paper/2019/file/3b220b436e5f3d917a1e649a0dc0281c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3b220b436e5f3d917a1e649a0dc0281c-Paper.pdf
https://arxiv.org/abs/2407.05005
https://arxiv.org/abs/2407.05005
https://doi.org/10.1109/TR.2024.3402308
https://doi.org/10.1109/TR.2024.3402308

Federated Continual Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

[42] Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. 2024. Expandable
Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning.
arXiv:2403.12030 [cs.CV] https://arxiv.org/abs/2403.12030

[43] Jieming Zhu, Guohao Cai, Junjie Huang, Zhenhua Dong, Ruiming Tang, and
Weinan Zhang. 2023. ReLoop2: Building Self-Adaptive Recommendation Models
via Responsive Error Compensation Loop. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 5728–5738.

https://arxiv.org/abs/2403.12030
https://arxiv.org/abs/2403.12030

	Abstract
	1 Introduction
	2 Related Work
	2.1 Federated Recommendation
	2.2 Continual Recommendation (CLRec)

	3 Proposed Task: FCRec
	3.1 Concept Definition
	3.2 Problem Formulation

	4 Proposed Method: F3CRec
	4.1 Overview
	4.2 Client-side Continual Learning
	4.3 Server-side Continual Learning

	5 Experiments
	5.1 Experimental Setup
	5.2 Main Performance
	5.3 Closer Look on Client-side
	5.4 Closer Look for Server-side
	5.5 Hyperparameter Study
	5.6 Privacy-Preserving

	6 Conclusion
	7 Acknowledgement
	8 GenAI Usage Disclosure
	References

